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LETTER TO THE EDITOR

Critical ultrasonics near the superfluid transition:
finite-size effects
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Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur,
Calcutta 700032, India
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Abstract. The suppression of order parameter fluctuations at the boundaries causes the
ultrasonic attenuation near the superfluid transition to be lowered below the bulk value. We
calculate explicitly the first deviation from the bulk value for temperatures above the lambda
point. This deviation is significantly larger than for static quantities such as the thermodynamic
specific heat or other transport properties such as the thermal conductivity. This makes
ultrasonics a very effective probe for finite-size effects.

Critical phenomena in confined geometry have been attracting a fair amount of attention of
late [1] because of the progress on the experimental front [2–9] which is making it possible
to check the predictions of finite-size effects (FSE). A fair amount of this experimental
effort has gone into studying the specific heat near the superfluid transition. With the
bulk-specific heat quite well understood and the existence of a sharp phase transition (apart
from gravity rounding, which can also be removed by carrying out experiments in space)
established, efforts have been made to study the FSE. It is expected that the FSE will
round out the transition and hence the divergence atT = Tλ will be removed. The specific
heat will be finite and the finite value will be a function of the confining length. We will
keep in mind one of the favoured experimental geometries, where one takes two parallel
plates separated by a distanceL, much smaller than the linear dimensions of the plates.
For L � ξ , the correlation length at a given temperature, the usual thermodynamic result
follows. It is whenL 6 ξ , that FSE dominate. Finite-size scaling suggests the existence of
a scaling function, function ofξ/L in terms of which the theory can be cast. The specific
heatC(t, L) in finite geometry has the formC(t, L) ∼ t−αg(t−ν/L) + constant where
ξ ∼ t−ν and t = (T − Tλ)/Tλ,Tλ being the transition temperature. The functiong has been
calculated by various authors [10–12]. In what follows we propose a method of checking
for FSE by studying a related dynamic property. This is the study of ultrasonic attenuation
(UA) near tλ at high frequencies. In fact, it is our contention that UA is one of the best
ways of checking for FSE since the single surface effect alone can produce effects greater
than 10%. The critical fluctuations relax according toξ−z, wherez is the dynamic scaling
exponent. For frequenciesω such thatω � 00, the Onsager’s constant (occurs if one is
close to the critical point), the attenuation is independent of the correlation length. For a
finite-size system, we shall show that in this limit, the attenuation is determined byω and
L alone. We provide explicit answers for frequenciesω which are much smaller than a
cut-off frequencyω0 (of the order of a few GHz) and for plate separationL > (200/ω)
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Figure 1. Saturation attenuation is plotted against frequency. The broken curve shows the bulk
(L→∞) result whereas the full curve shows the surface effect.

for a given frequencyω. Our prediction for the attenuation per wavelength as a function of
ω for the plate separation of 2110̊A is shown in figure 1. It should be possible to check
the prediction experimentally. In fact, this should be the simplest way of checking for FSE
since the effect is quite pronounced (about 18% atL = 2110 Å andω = 10 Mhz) for the
available confining lengths as shown in figure 1. This occurs because the imaginary part of
the specific heat determines the UA and is much smaller than the real part, but as we shall
see below,both are equally affected by the FSE. Consequently, the relative effect is much
larger for the imaginary part and this will show up in the UA.

The basis of our calculation is once more the Pippard–Buckingham–Fairbank (PBF)
relation [13, 14] which gives a successful account [15–17] of the critical ultrasonics in the
situation whereL� ξ . The PBF relation is obtained from general considerations of entropy
clamping and yields for the sound velocityu(T , ω)

u(T , ω) = u0(T0)+ u1C0/CP (T , ω) (1)

whereu0(T0) is the sound speed at the transition point (T0 is the bulkTλ for the infinite
system, but is aL-dependent temperature for the finite-size system),u1 andC0 are constants
andCP (T , ω) is the specific heat at finite frequency.

For the bulk case,CP (T , ω = 0) diverges atT = Tλ andCP (T , ω) is a homogeneous
function ofω andξ . If the characteristic relaxation rate is00ξ

−z then the scaling form of
Cbulk
P is

Cbulk
P (T , ω) = ξα/νf

(
ω

00ξ−z

)
. (2)

The exponentα is very close to zero for the superfluid transition in4He and for many
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practical purposes, it is possible to write

Cbulk
P (T , ω) = C

[
ln(3ξ)+ f

(
ω

00ξ−z

)]
. (3)

The functionf (ω/(00ξ
−z)) reduces to a constant forω = 0 and tends to− ln(ω/00)

1/zξ

for ω � 00ξ
−z. A one-loop calculation of the scaling functionf (�) where� = ω/00ξ

−z,
was carried out and led to a successful scaling theory of the attenuation in the bulk4He
nearTλ [15–17].

We now need to discuss the effect of a confining geometry. At zero frequency, the
specific heat is blunted due to the FSE and the usually divergent specific heat remains
finite. The single-loop calculation of the scaling functiong(ξ/L) discussed before gives a
very reasonable account of the recent specific heat data by Mehta and Gasparini [2]. One
of the most important feature of the scaling function is the lowξ/L limit (experimentally
most easily accessible) is the first departure from the thermodynamic limit—the magnitude
of this departure1C has to be proportional to the surface-to-volume ratio (A:V ) and hence
from purely dimensional arguments, the correction can be written as

1C = C(ξ, L)− C∞(ξ) = −aCA ξ
V

(4)

wherea is a number of O(1), which can be obtained from the functiong(ξ/L), andC is
the dimensional constant defined in equation (3). The value ofa as inferred from Schmolke
et al [11] is 1.4. The agreement of this departure with the measured departure of Mehta
and Gasparini is impressive.

For our present concern we need the three variable functionsC(ξ, L, ω), whose two
limits C(ξ, ω) andC(ξ, L) are already well known. We will characterizeC(ξ, L, ω) by
its first departure from the infinite-volume limitC(ξ, ω) and write the generalization of
equation (4) as

1C(ξ, L, ω) = C(ξ, L, ω)− C(ξ, ω) = −a(ξ, ω)C(ξ)A/V (5)

wherea(ξ, ω) is a scaling function, whose zero-frequency limit isaξ (see equation (4)) and
whose general form will be presented below. As soon as we start discussing the scaling
function for C(ξ, L, ω) we need to worry about what sets the scale forω. As we have
discussed above, this has to be the rate of decay of fluctuations0(ξ). In the finite geometry
that we are now discussing, the scale for decay of fluctuations will also depend onL. In
discussing the correction depicted in equation (5), it is obvious that this fine point does not
need to be discussed as this correction is already O( 1

L
). For He (superfluid transition), there

is in someways an additional simplifying feature. For the order parameter decay rate the
nonlinear effect of fluctuations becomes significant, only very close to the critical point and
for all practical purposes, the relaxation rate can be taken to be at its noncritical background
value. This means the dynamic critical exponentz can be taken to be 2.

The complex order parameter fieldψi(x) {i = 1, 2} will be governed by the Langevin
equation

ψ̇i = −00
δF

δψi
+Ni (6)

where

F =
∫

dDx

[
m2

2
ψ2+ 1

2
(∇ψ)2+ λ

4
(ψ2)2

]
(7)

andN is a Gaussian white noise. The Gaussian white noise ensures that the fluctuation–
dissipation theorem will hold and the equilibrium correlation function of the theory will
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be obtainable from the free energy functional of equation (7). For reasons stated above
we choose to drop the reversible term (the Josephson equation for the phase of the order
parameter). The parameterm2 is proportional toT − Tλ, whereTλ is the bulk transition
temperature. The system is confined in one of theD directions. We call that thez-direction.
It is convenient to work with the Fourier transform inD−1 directions and the Fourier series
(Dirichlet boundary conditions atz = 0 andz = L suppressing the fluctuations) in thez-
direction. The expansion of the time-dependent order parameter field is

ψi(r, t) =
∑
n

ψi(n,K, t)expiK·R sin
(nπz
L

)
. (8)

The equation of motion forψi(n,K, t) is

ψ̇i(n,K, t) = −00

(
m2+K2+ n

2π2

L2

)
ψi(n,K, t)+Ni +O(ψ3). (9)

In what follows, we will assume that all static correlations have been accounted for and
m2 = ξ−2. The specific heat is obtained as the response function corresponding to the
time-dependent correlation function

D(ξ, L, t12) = 1

V

∫ ∫ ∫
dz1 dz2 dDR12 〈ψ2(R1, z1, t1)ψ

2(R2, z2, t2)〉 (10)

with D(ξ, L, ω) = 2ImC(ξ,L,ω)

ω
according to the fluctuation–dissipation theorem,

straightforward algebra leads to the one-loop response function

C(ξ, L, ω) = 1

L

∑
±1,±2,...

∫
dD−1p

(2π)D−1

1

(p2+m2+ n2π2

L2 )

1

(− iω
200
+ p2+m2+ n2π2

L2 )

= 1

L

∑
0,±1,±2,...

∫
dD−1p

(2π)D−1

1

(p2+m2+ n2π2

L2 )

1

(− iω
200
+ p2+m2+ n2π2

L2 )

− 1

L

∫
dD−1p

(2π)D−1

1

(p2+m2)

1

(− iω
200
+ p2+m2)

. (11)

The sum in the first term on the right-hand side of equation (11) can be evaluated by the
standard techniques of residues. If we are working to two-term accuracy, i.e. the bulk limit
(L→∞) and the surface term (i.e.L−1) then the result of working out the sum is the same
as working out an integral (L→∞ makes the sum continuous) and thus

C(ξ, L, ω) =
∫

dDp

(2π)D
1

(p2+m2)

1

(− iω
200
+ p2+m2)

− 1

L

∫
dD−1p

(2π)D−1

1

(p2+m2)

1

(− iω
200
+ p2+m2)

. (12)

We work to logarithmic accuracy and hence evaluate the integrals atD = 4 (proper
exponentiation can be undertaken by working to two-loop order, the details of which will
be published elsewhere) to obtain the functionsf (�) anda(�) introduced in equations (3)
and (5). Note that since we are taking the logarithmic divergence for the bulk specific heat,
the C(ξ) in equations (4) and (5) reduces the constantC of equation (3). The function
f (�) anda(�) are

f (�) = 1

2

(
1

−i�
− 1

)
ln(1− i�) (13)

a(�) = π

2

1

−i�

[√
1− i�− 1

]
(14)
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leading to

C(ξ, L, ω) = C0

{
ln
3

m
− 1

4
ln(1+�2)− 1

2�
tan−1(�)

+i

[
1

2
tan−1(�)− 1

4�
ln(1+�2)

]
− π

mL�
(1+�2)

1
4 sin

(
tan−1�

2

)
− iπ

mL�

[
(1+�2)

1
4 cos

(
tan−1�

2

)
− 1

]}
= CR + iCI (15)

whereCR andCI are the real and imaginary parts of the specific heat.
We now return to equation (1), to find the attenuation and dispersion. Theattenuation

per wavelengthis

αλ

2π
= u1C0CI

U0(C
2
R + C2

I )

which leads to the frequency attenuation(ω � 200m
2) as

αλ

2π
= πu1

u0

[1− 2
√

2( 200
ωL2 )

1
2 ]

[ln(ω0
ω
)−√2π( 200

ωL2 )
1
2 ]2+ π2

4 [1− 2
√

2( 200
ωL2 )

1
2 ]2
. (16)

This is thesaturation attenuationper wavelength, which does not change as the temperature
is lowered further, whereω0/2π = 30 GHz,00 = 1.2× 10−4 cm2 s−1, u1/u0 = 8

3 × 10−2.
For the plate separation of 2110̊A of Mehta and Gasparini, the reduction in the

attenuation due to the quenching of fluctuations is about 18% at 10 MHz and increases
to 45% at 2.5 MHz. This is a large effect compared with the 4% surface effects that show
up in the static measurements. For the corresponding measurement of thermal conductivity
near the superfluid transition. Kahn and Ahlers [9] found that the deviation from the bulk
is about 7% when the correlation lengthξ equals the confining lengthL (in their case the
radius of the pore). The surface effect for the ultrasonic measurement can easily amount
to 30% which makes this an attractive system for a confrontation between theory and
experiment. The effect of the finite size on the dispersion can be obtained from the real
part of equation (1).

We note that the above is a one-loop calculation in the critical region. The lack of
crossover to the background in our treatment of the specific heat implies that we can
consider frequenciesω which are much smaller than the cut-off frequencyω0. This is a
restriction on the validity of the broken curve shown in figure 1. The full curve in addition
is restricted to confining lengths which are not too small, i.e.L > (200/ω)

1/2 and in this
regime the accuracy of the calculation is restricted by the loop order. This is not too severe
a restriction as an accuracy of O(ε) which our calculation entails, becomes an accuracy of
O( α

ν
) when the combinatorial factors are included. Thus, in the above-mentioned ranges of

the parametersω andL, the broken curve in figure 1 should be an accurate prediction. It
should be noted that in contrast to the static specific heat or the thermal conductivity which
can be probed in real experiments as well as in computer simulations, the sound properties
can only be probed in a real experiment. The final issue is then whether the effect can
be observed in a real experiment. The critical ultrasonics near the superfluid transition
was studied more than two decades ago. The most accurate data of that period lie in the
0.5–5 MHz range. In this region the scatter in the data is about 15%. This is somewhat
better than the borderline for detecting the suppression reported here. Considering the fact
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that developments in the experimental field would enable more accurate measurements at
present, we believe that this effect should be experimentally accessible.

The other sensitive part of an ultrasonic measurement is the low-frequency end
(ω � 200m

2), where for the bulk substance the attenuation per wavelength is proportional
toC2

R�/4. The relative correction for the FSE is 1− π
2mL , once again a larger effect than can

be obtained in statics. For an easily realizable situation ofml ∼ 8 this gives a 20% reduction
in the attenuation. The whole course of the attenuation function with its dependence onω

andL is straightforward to obtain and will be exhibited elsewhere. Here we have reported
the salient features, which carry the most experimentally accessible signatures. We hope
that this will stimulate experimental activity in the field.

SB would like to thank the CSIR, India, for providing partial financial support and Dr
Manabesh Bhattacharya for his help and encouragement.
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